Name:

Formelsammlung

für die Funkamateurprüfung

Widerstand

Serieschaltung
$$R_{ges} = R_1 + R_2 + ... + R_n$$
 $R_{ges} = \sum_{i=1}^{n} R_i$

Parallelschaltung
$$\frac{1}{R_{ges}} = \frac{1}{R_1} + \frac{1}{R_2} + \ldots + \frac{1}{R_n} \qquad \qquad R_{ges} = \frac{R_1 \cdot R_2}{R_1 + R_2} \qquad \qquad \frac{1}{R_{ges}} = \sum \frac{1}{R_i}$$

Kondensator

Serieschaltung:
$$\frac{1}{C_{ges}} = \frac{1}{C_1} + \frac{1}{C_2} + \dots + \frac{1}{C_n} \qquad C_{ges} = \frac{C_1 \cdot C_2}{C_1 + C_2} \qquad \frac{1}{C_{ges}} = \sum \frac{1}{C_i}$$

$$X_{Cges} = X_{C1} + X_{C2} + \dots + X_{Cn}$$

$$X_{Cges} = \sum X_{Ci}$$

Parallelschaltung
$$C_{ges} = C_1 + C_2 + ... + C_n$$
 $C_{ges} = \sum C_i$

$$\frac{1}{X_{Cges}} = \frac{1}{X_{C1}} + \frac{1}{X_{C2}} + \dots + \frac{1}{X_{Cn}} \qquad X_{Cges} = \frac{X_{C1} \cdot X_{C2}}{X_{C1} + X_{C2}} \qquad \frac{1}{X_{Cges}} = \sum \frac{1}{X_{Ci}}$$

Spule

Serieschaltung
$$L_{ges} = L_1 + L_2 + ... + L_n$$
 $L_{ges} = \sum L_i$

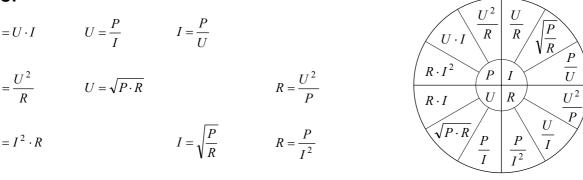
$$X_{Lges} = X_{L1} + X_{L2} + \dots + X_{Ln}$$

$$X_{Lges} = \sum X_{Li}$$

Parallelschaltung
$$\frac{1}{L_{ges}} = \frac{1}{L_1} + \frac{1}{L_2} + \ldots + \frac{1}{L_n} \qquad \qquad L_{ges} = \frac{L_1 \cdot L_2}{L_1 + L_2} \qquad \qquad \frac{1}{L_{ges}} = \sum \frac{1}{L_i}$$

$$\frac{1}{X_{Lges}} = \frac{1}{X_{L1}} + \frac{1}{X_{L2}} + \dots + \frac{1}{X_{Ln}} \qquad X_{Lges} = \frac{X_{L1} \cdot X_{L2}}{X_{L1} + X_{L2}} \qquad \frac{1}{X_{Lges}} = \sum \frac{1}{X_{Li}}$$

URI


$$U = R \cdot I \qquad I = \frac{U}{R} \qquad R = \frac{U}{I} \qquad \boxed{P}$$

PUI

$$P = U \cdot I$$
 $U = \frac{P}{I}$ $I = \frac{P}{U}$

$$P = \frac{U^2}{R} \qquad \qquad U = \sqrt{P \cdot R} \qquad \qquad R = \frac{U^2}{P}$$

$$P = I^2 \cdot R \qquad I = \sqrt{\frac{P}{R}} \qquad R = \frac{P}{I^2}$$

FUSpannung VCKapazität R Widerstand Ω LInduktivität X_C Kapazitiver Blindwiderstand Ω Н Ι P X_L Induktiver Blindwiderstand Ω Strom ALeistung W

Widerstand in Drähten

$$R = \frac{\rho \cdot l}{A} \qquad \Delta R = \alpha \cdot \Delta T \cdot R_{20}$$

$$R = R_{20} + \Delta R = R_{20} \cdot (1 + \alpha \cdot \Delta T)$$

$$R_{20} = \frac{R}{1 + \alpha \cdot \Delta T}$$

$$G = \frac{1}{R}$$

Widerstand (bei Temperatur T)

R₂₀ Widerstand bei 20 °C Ω

 Ω △R Widerstandsänderung zu 20 °C

 ΔT Temperaturdifferenz zu 20 °C K oder °C

Ω

 K^{-1}

$$\rho$$
 spezifischer Widerstand $\frac{\Omega \cdot mm^2}{m}$

 $\rho_{Kupfer} = 0.0178$

Temperaturkoeffizient

Leiterlänge m

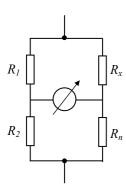
Leiterquerschnitt A mm^2

Leitwert S

Kirchhoffsche Gesetze

1. Kirchhoffsches Gesetz - Knotenregel

Die Summe aller Ströme an einem Knoten ist Null:


$$I_1 + I_2 + I_3 + \dots + I_n = 0$$

2. Kirchhoffsches Gesetz - Maschenregel

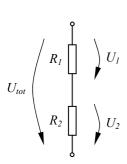
Die Summe aller Spannungen in einer Masche ist Null:

$$U_1 + U_2 + U_3 + \dots + U_n = 0$$

Messbrücke

$$\frac{R_1}{R_2} = \frac{R_x}{R_n}$$

$$R_x = \frac{R_1}{R_2} \cdot R_n$$


$$R_n = \frac{R_2}{R_1} \cdot R_x$$

(Wheatstone-Brücke)

unbekannter Widerstand Ω Vergleichswiderstand Ω

R₁, R₂ bekannte Widerstände Ω

Spannungsteiler

$$\frac{U_1}{U_2} = \frac{R_1}{R_2}$$

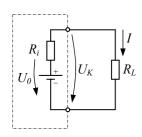
$$U_1 = U_2 \cdot \frac{R_1}{R_2} = U_{tot} \cdot \frac{R_1}{R_1 + R_2}$$

$$U_2 = U_1 \cdot \frac{R_2}{R_1} = U_{tot} \cdot \frac{R_2}{R_1 + R_2}$$

$$U_{tot} = U_2 \cdot \frac{R_1 + R_2}{R_2} = U_1 \cdot \frac{R_1 + R_2}{R_1}$$

$$U_{tot} = U_1 + U_2$$

$$I = \frac{U_1}{R_1} = \frac{U_2}{R_2} = \frac{U_{tot}}{R_1 + R_2}$$


$$U_{tot} = U_2 \cdot \frac{R_1 + R_2}{R_2} = U_1 \cdot \frac{R_1 + R_2}{R_2}$$

$$R_1 = R_2 \cdot \left(\frac{U_{tot}}{U_2} - 1\right) = R_2 \cdot \left(\frac{U_{tot}}{U_1} - 1\right)^{-1}$$

$$R_2 = R_1 \cdot \left(\frac{U_{tot}}{U_1} - 1\right) = R_1 \cdot \left(\frac{U_{tot}}{U_2} - 1\right)^{-1}$$

$$U$$
 Spannung V R Widerstand Ω

Innenwiderstand

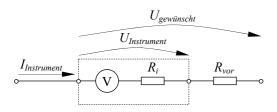
$$U_K = U_0 - I \cdot R_i = U_0 \cdot \frac{R_L}{R_i + R_L}$$

$$I = \frac{U_0}{R_i + R_L} \qquad \qquad I_k = \frac{U_0}{R_i}$$

$$R_{i} = \frac{U_{0} - U_{K}}{I} = \frac{U_{0}}{I} - R_{L} = \frac{U_{0}}{I_{k}}$$

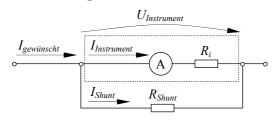
$$U_0$$
 Elektromotorische Kraft U_{EMK} V auch Quellenspannung (Leerlaufspannung)

$$U_K$$
 Klemmenspannung V


$$I_k$$
 Kurzschlussstrom A

$$R_i$$
 Innenwiderstand Ω

$$R_L$$
 Lastwiderstand Ω


Messbereichserweiterung

Spannungsmessung

$$R_{vor} = R_i \cdot \left(\frac{U_{gew\"{u}nscht}}{U_{Instrument}} - 1 \right) = \frac{U_{gew\"{u}nscht} - U_{Instrument}}{I_{Instrument}}$$

Strommessung

$$R_{\mathit{Shunt}} = R_i \cdot \frac{I_{\mathit{Instrument}}}{I_{\mathit{gewünscht}} - I_{\mathit{Instrument}}} = \frac{U_{\mathit{Instrument}}}{I_{\mathit{gewünscht}} - I_{\mathit{Instrument}}}$$

$$R_i = \frac{U_{Instrument}}{I_{Instrument}}$$

 R_{Shunt} : Nebenwiderstand Ω

Transformator

$$\ddot{u} = \frac{N_1}{N_2} = \frac{U_1}{U_2} = \frac{I_2}{I_1} = \sqrt{\frac{R_1}{R_2}}$$

$$\ddot{u} = \sqrt{\frac{Z_1}{Z_2}} = \sqrt{\frac{L_1}{L_2}} = \sqrt{\frac{C_2}{C_1}}$$

$$P_1 = P_2$$
 $\Theta_1 = \Theta_2$

Wirkungsgrad

$$\eta = \frac{P_{ab}}{P_{zu}} = \frac{P_{ab}}{P_{ab} + P_V}$$

$$P_{ab} = P_{zu} - P_V$$

R Widerstand
$$\Omega$$

Z Impedanz
$$\Omega$$

$$\Theta$$
 Durchflutung A

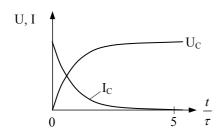
$$P_{zu}$$
 zugeführte Leistung W

$$P_{ab}$$
 abgegebene Leistung

$$P_V$$
 Verlustleistung W

W

Leistungsanpassung

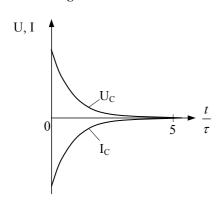

$$R_i = R_{Last} = \frac{U_1 - U_2}{I_2 - I_1} \qquad U_k = \frac{U_0}{2} \qquad I = \frac{I_k}{2}$$

$$P_{\text{max}} = \frac{{U_0}^2}{4 \cdot R_i} \qquad P_{Last} = \frac{{U_0}^2 \cdot R_{Last}}{\left(R_i + R_{Last}\right)^2} = P_{\text{max}}$$

Ω R_i Innenwiderstand R_{Last} Lastwiderstand Ω V*U_k* Klemmenspannung V U_0 Leerlaufspannung Laststrom \boldsymbol{A} Kurzschlussstrom \boldsymbol{A} P_{Last} abgegebene Leistung W P_{max} maximale Leistung W U_1 Spannung im Lastfall 1 VU₂ Spannung im Lastfall 2 VStromstärke im Lastfall 1 AStromstärke im Lastfall 2 A*U*₀ Spannung Spannungsquelle V

Kondensator

Aufladung


$$\tau = R \cdot C$$

$$\boldsymbol{U}_{C} = \boldsymbol{U}_{0} \cdot \left(1 - e^{-\frac{t}{\tau}}\right) = \boldsymbol{U}_{0} \cdot \left(1 - e^{-\frac{t}{R \cdot C}}\right)$$

$$I_C = I_0 \cdot e^{-\frac{t}{\tau}} = I_0 \cdot e^{-\frac{t}{R \cdot C}}$$

$$I_0 = \frac{U_0}{R}$$
 am Zeitpunkt 0

Entladung

$$\tau = R \cdot C$$

$$U_C = U_0 \cdot e^{-\frac{t}{\tau}} = U_0 \cdot e^{-\frac{t}{R \cdot C}}$$

 U_0 Anfangsspannung Kond. V

$$I_C = I_0 \cdot e^{-\frac{t}{\tau}} = I_0 \cdot e^{-\frac{t}{R \cdot C}}$$

$$I_0 = -\frac{U}{R}$$
 am Zeitpunkt 0

$$E = \frac{U}{d} = \frac{F}{Q}$$

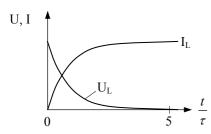
$$Q = C \cdot U = I \cdot t$$
 $\rightarrow I = C \cdot \frac{\Delta U}{\Delta t}$

$$C = \frac{I \cdot t}{U} = \frac{Q}{U} \qquad C = \frac{\varepsilon_0 \cdot \varepsilon_r \cdot A}{d}$$

$$X_C = \frac{1}{\omega \cdot C} = \frac{1}{2 \cdot \pi \cdot f \cdot C}$$

$$E Elektrische Feldstärke \frac{V}{m}$$

Strom (Laden bzw. Entladen)


A Plattenoberfläche
$$m^2$$

 ε_0 physikalische Dielektrizitätskonstante

$$= 8.854187871 \cdot 10^{-12} \quad \frac{As}{Vm} = \frac{F}{m}$$

$$\varepsilon_r$$
 Material-Dielektrizitätskonstante
Luft = 1

Spule und magnetisches Feld

Aufladung

$$\tau = \frac{L}{R}$$

$$egin{array}{ll} U_L & Augenblicks \ U_0 & Anfangsspan \ I_L & Augenblicks \end{array}$$

Induktivität

Widerstand

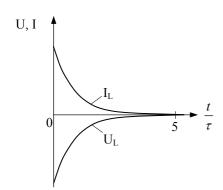
Zeitkonstante

$$U_L$$
 Augenblickswert Spulenspannung U_0 Anfangsspannung Spule

$$U_0$$
 Anfangsspannung Spule V
 I_L Augenblickswert Spulenstrom A

Н

S


Ω

V

$$I_0$$
 Anfangsstrom Spule V

$$I_L = I_0 \cdot \left(1 - e^{-\frac{t}{\tau}}\right) = I_0 \cdot \left(1 - e^{-\frac{t \cdot R}{L}}\right) \qquad I_0 = \frac{U_0}{R} \text{ am Zeitpunkt } 0$$

Entladung

$$\tau = \frac{L}{R}$$

$$U_L = U_0 \cdot e^{-\frac{t}{\tau}} = U_0 \cdot e^{-\frac{t \cdot R}{L}}$$

 $U_L = U_0 \cdot e^{-\frac{t}{\tau}} = U_0 \cdot e^{-\frac{t \cdot R}{L}}$

$$I_L = I_0 \cdot e^{-\frac{t}{\tau}} = I_0 \cdot e^{-\frac{t \cdot R}{L}}$$

$$I_0 = \frac{U}{R}$$
 am Zeitpunkt 0

$$L = \frac{N^2}{R_M} = U \cdot \frac{\Delta t}{\Delta I} = \frac{\mu_0 \cdot \mu_r \cdot A \cdot N^2}{l} = \frac{\Phi \cdot N}{I}$$

$$X_L = \omega \cdot L = 2 \cdot \pi \cdot f \cdot L$$

$$\omega = 2 \cdot \pi \cdot f$$

$$Q = \frac{X_L}{R_V} = \frac{\omega \cdot L}{R_V} = \frac{2 \cdot \pi \cdot f \cdot L}{R_V}$$

$$U_i = L \cdot \frac{\Delta I}{\Delta t} = N \cdot \frac{\Delta \Phi}{\Delta t} = N \cdot A \cdot \frac{\Delta B}{\Delta t}$$

$$U_{Si} = -L \cdot \frac{\Delta I}{\Delta t} = -\frac{N^2}{R_M} \cdot \frac{\Delta I}{\Delta t}$$

$$\Phi = B \cdot A$$

$$B = \mu_0 \cdot \mu_r \cdot H$$

$$H = \frac{\Theta}{l}$$

$$\Theta = I \cdot N$$

$$R_M = \frac{\Theta}{\Phi} = \frac{l}{\mu_0 \cdot \mu_r \cdot A} \qquad \quad \Lambda_M = \frac{1}{R_M}$$

L Induktivität
$$H = \frac{Vs}{A}$$

A Spulenquerschnitt
$$m^2$$

$$\mu_0$$
 magnetische Feldkonstante

$$= 4\pi \cdot 10^{-7} \approx 1.257 \cdot 10^{-6} \qquad \frac{V_S}{Am}$$

$$\mu_r$$
 Permeabilität (Material)

$$X_L$$
 induktiver Blindwiderstand Ω

$$R_V$$
 Verlustwiderstand Ω

$$R_M$$
 magnetischer Widerstand $\frac{A}{V_S}$

$$R_V$$
 Verlustwiderstand Ω

$$U_i$$
 induzierte Spannung V

$$U_{Si}$$
 Selbstinduktionsspannung V

H magn. Feldstärke
$$\frac{A}{m}$$

$$\Lambda_M$$
 magnetischer Leitwert H

$$B_R$$
 Remanenzflussdichte T

$$H_C$$
 Koerzitivfeldstärke

A/m

Impedanz und Blindwiderstand

$$U_{eff} = \frac{U_S}{\sqrt{2}}$$

$$U_S = U_{eff} \cdot \sqrt{2}$$

$$U_{eff} = \frac{U_S}{\sqrt{2}}$$
 $U_S = U_{eff} \cdot \sqrt{2}$ $U_{SS} = 2 \cdot U_S = 2\sqrt{2} \cdot U_{eff}$

$$U_{eff} = \frac{1}{T} \cdot \int_{0}^{T} U^{2}(t)dt$$

 U_{eff} Effektivspannung (auch U_{RMS}) V

V U_S Spitzenspannung (auch \hat{U})

$$U_{SS}$$
 Spitzen-Spitzenspannung V

$$X_C = \frac{1}{\omega \cdot C} = \frac{1}{2 \cdot \pi \cdot f \cdot C}$$

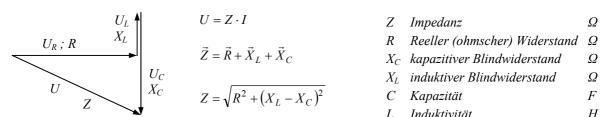
$$X_C = \frac{U_C}{I_C}$$

$$X_C = \frac{U_C}{I_C}$$
 $\frac{U_C}{I_C} = \frac{1}{\omega \cdot C}$ $I_C = \frac{U_C}{X_C}$ $U_C = X_C \cdot I_C$

$$T_C = \frac{U_C}{X_C}$$

$$U_C = X_C \cdot I_C$$

Induktiver Blindwiderstand:


$$X_L = \omega \cdot L = 2 \cdot \pi \cdot f \cdot L$$

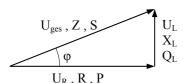
$$X_L = \frac{U_L}{I_L}$$

$$\frac{U_L}{I_L} = \omega \cdot L$$

$$I_L = \frac{U_L}{X_I}$$

$$X_L = \frac{U_L}{I_L} \qquad \qquad \frac{U_L}{I_L} = \omega \cdot L \qquad \qquad I_L = \frac{U_L}{X_L} \qquad \qquad U_L = X_L \cdot I_L$$

$$U = Z \cdot I$$


$$\vec{Z} = \vec{R} + \vec{X} + \vec{X}$$

$$\sqrt{p^2 \cdot (y + y)^2}$$

$$X_t$$
 induktiver Blindwiderstand Ω

Merksatz: Bei Induktivitäten die Ströme sich verspäten.

Leistung im Wechselstromkreis

$$\cos \varphi = \frac{P}{S} = \frac{R}{Z} = \frac{U_R}{U_{ges}}$$

$$\begin{array}{c} \begin{array}{c} U_{\rm L} \\ X_{\rm L} \\ Q_{\rm L} \end{array} & \cos \varphi = \frac{P}{S} = \frac{R}{Z} = \frac{U_R}{U_{ges}} \end{array} \qquad \begin{array}{c} \begin{array}{c} U \quad Spannung \\ I \quad Strom \\ P \quad Wirkleistung \\ S \quad Scheinleistung \\ Q_L \quad induktive \; Blindleistung \\ cos\varphi \; Leistungs faktor \end{array} \qquad \begin{array}{c} V \\ A \\ Q_L \end{array}$$

Schwingung

Resonanzbedingung:

$$X_C = X_L$$

$$\frac{1}{\omega \cdot C} = \omega \cdot L$$

$$\omega = \frac{1}{\sqrt{L \cdot C}}$$

$$f_{res} = \frac{1}{2 \cdot \pi \cdot \sqrt{L \cdot C}}$$

 X_L induktiver Blindwiderstand

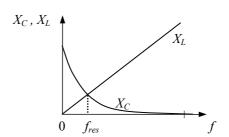
 Ω X_C kapazitiver Blindwiderstand Ω

 s^{-1} Kreisfrequenz

LInduktivität H

FKapazität

fres Resonanzfrequenz Hz


$$\omega = 2 \cdot \pi \cdot f$$

$$f = \frac{\omega}{2 \cdot \pi}$$

$$L = \frac{1}{\omega^2 \cdot C} = \frac{1}{4 \cdot \pi^2 \cdot f^2 \cdot C}$$

$$C = \frac{1}{\omega^2 \cdot L} = \frac{1}{4 \cdot \pi^2 \cdot f^2 \cdot L}$$

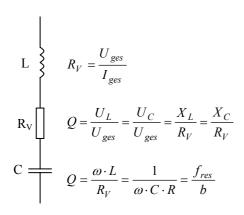
$$X_C = X_L = \sqrt{\frac{L}{C}}$$

Schwingkreise

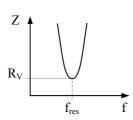
Allgemein

$$b = \frac{f_{res}}{Q} = \frac{R_V}{2 \cdot \pi \cdot L}$$

$$b = f_o - f_u$$


$$f_{res} = \frac{f_o + f_u}{2}$$

$$Q = \frac{1}{d} = \frac{f_{res}}{b} = \frac{f_o + f_u}{2 \cdot (f_o - f_u)}$$

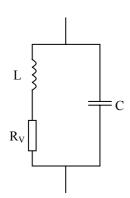

$$T = 2 \cdot \pi \cdot \sqrt{L \cdot C}$$

- Bandbreite (-3 dB Punkt) Ηz
- obere Grenzfrequenz Hz
- untere Grenzfrequenz Hz
- fres Resonanzfrequenz Ηz
- d Dämpfungsfaktor
- TSchwingungsdauer (Resonanz)
- Q Güte
- Induktivität Н L
- Kapazität F

Reihen-/Serieschwingkreis

Z_0	Resonanzwiderstand	${\it \Omega}$
R_V	Serie-Verlustwiderstand	Ω
Q	Güte	_
X	Blindwiderstand	Ω
f_{res}	Resonanzfrequenz	Hz
b	Bandbreite	Hz

Serie-Schwingkreiswiderstand


Phase:
$$\tan \varphi = \frac{\omega \cdot L - \frac{1}{\omega \cdot C}}{R_{V}}$$

$$U_{ges} Spannung über Serieschwingkreis$$

$$I_{ges} Spannung durch Serieschwingkreis$$

Teilspannungen:
$$U_C = X_C \cdot \frac{U_{ges}}{\sqrt{{R_V}^2 + (X_L - X_C)^2}} = X_C \cdot \frac{U_{ges}}{|Z_S|} = X_C \cdot I_{ges}$$

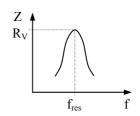
$$U_L = X_L \cdot \frac{U_{ges}}{\sqrt{{R_V}^2 + (X_L - X_C)^2}}$$

Parallelschwingkreis

$$Z_0 = \frac{L}{C \cdot R_V} = \frac{U_{ges}}{I_{ges}} = R_p$$

$$Z_0 = \frac{(\omega \cdot L)^2}{R_V} = Q \cdot X_L$$

$$Z_0 = \frac{(\omega \cdot L)^2}{R_V} = Q \cdot X_L$$


$$Q = \frac{I_L}{I_{ges}} = \frac{I_C}{I_{ges}} = \frac{Z_0}{X_L} = \frac{Z_0}{X_C}$$

$$Q = \omega \cdot C \cdot Z_0 = \frac{Z_0}{\omega \cdot L} = \frac{f_{res}}{b}$$

$$Z_0$$
 Resonanzwiderstand Ω

$$R_p$$
 Parallelwiderstand Ω

$$R_V$$
 Serie-Verlustwiderstand Ω

Parallel-Schwingkreiswiderstand

Betrag:
$$\frac{1}{\left|Z_{p}\right|} = \sqrt{\frac{1}{{R_{p}}^{2}} + \left(\frac{1}{\omega \cdot L} - \omega \cdot C\right)^{2}}$$

Phase:
$$\tan \varphi = \frac{\frac{1}{\omega \cdot L} - \omega \cdot C}{\frac{1}{R_p}}$$

Resonanz:
$$Z_p = R_p$$
 $\varphi = 0$

$$R_p \cdot R_V = \frac{L}{C}$$

Shape-Faktor:
$$F = \frac{B_{-60dB}}{B_{-6dB}}$$

 Z_p Parallel-Resonanzwiderstand Ω

 R_p Parallelwiderstand Ω

 R_V Serie-Verlustwiderstand Ω

ω Kreisfrequenz s⁻¹
 L Induktivität H

C Kapazität F
φ Phasenwinkel rad

F Shape-Faktor (Formfaktor) –

 b_{60dB} Bandbreite bei -60 dB Hz b_{6dB} Bandbreite bei -6 dB Hz

Oszillator

 $k \cdot v = 1$ $k \cdot R$ ückkopplungsfaktor – $v \cdot V$ erstärkungsfaktor –

Dezibel-Pegel

	<u> </u>	
Pegel	Leistungsverhältnis P ₂ / P ₁	Spannungsverhältnis U ₂ / U ₁
40 dB	10000	100
30 dB	1000	31.6
20 dB	100	10
10 dB	10	3.16
6 dB	4	2
3 dB	2	1.41
2.15 dB	1.64	1.28
1.5 dB	1.41	1.19
1 dB	1.26	1.12
0 dB	1	1
-1 dB	0.794	0.891
-1.5 dB	0.708	0.841
-2.15 dB	0.61	0.781
-3 dB	0.5	0.708
-6 dB	0.25	0.5
-10 dB	0.1	0.316
-20 dB	0.01	0.1
-30 dB	0.001	0.0316
-40 dB	0.0001	0.01

Filter

•	Kondensator an	Gleichspannung	\rightarrow	$Z \approx \infty$ (sperrt)
---	----------------	----------------	---------------	-----------------------------

Kondensator an Hochfrequenz \rightarrow Z \approx 0 (leitet)

• Spule an Gleichspannung \rightarrow $Z \approx 0$ (leitet)

Spule an Hochfrequenz \rightarrow $Z \approx \infty$ (sperrt)

f_{grenz}	Grenzfrequenz	s^{-1}
L	Induktivität	H
C	Kapazität	F

U_e Eingangsspannung V

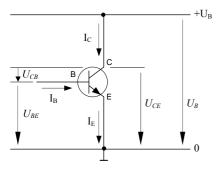
 U_a Ausgangsspannung V

R Widerstand Ω

 X_C kapazitiver Blindwiderstand Ω

 X_L induktiver Blindwiderstand Ω

	Tiefpass $f_{grenz} = -3 \text{ dB}$	Hochpass $f_{grenz} = -3 \text{ dB}$
	$U_{e} \xrightarrow{L} U_{a}$ $C $	$U_{e} \stackrel{C}{$
LC	<i>dn.</i>	<i>m. m.</i>
	$f_{grenz} = \frac{1}{2 \cdot \pi \cdot \sqrt{L \cdot C}}$	$f_{grenz} = \frac{1}{2 \cdot \pi \cdot \sqrt{L \cdot C}}$
	$U_{e} \xrightarrow{R} U_{a}$ $C $	$U_{e} \stackrel{C}{$
200	<i>dn.</i>	<i>m</i> —— <i>m</i>
RC	$f_{grenz} = \frac{1}{2 \cdot \pi \cdot R \cdot C}$	$f_{grenz} = \frac{1}{2 \cdot \pi \cdot R \cdot C}$
	$U_a = U_e \cdot \frac{X_C}{\sqrt{R^2 + {X_C}^2}}$	$U_a = U_e \cdot \frac{R}{\sqrt{R^2 + X_C^2}}$
	$U_e \xrightarrow{L} U_a$	$U_e \xrightarrow{R} U_a$
	R	L } m
RL	$f_{grenz} = \frac{R}{2 \cdot \pi \cdot L}$	$f_{grenz} = \frac{R}{2 \cdot \pi \cdot L}$
	$U_a = U_e \cdot \frac{R}{\sqrt{R^2 + X_L^2}}$	$U_a = U_e \cdot \frac{X_L}{\sqrt{R^2 + X_L^2}}$


Transistor

$$I_C = B \cdot I_B \qquad \qquad B = \frac{I_C}{I_B}$$

$$I_E = I_C + I_B = \big(B+1\big) \cdot I_B$$

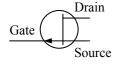
$$P_V = U_{CE} \cdot I_C + U_{BE} \cdot I_B \approx U_{CE} \cdot I_C$$

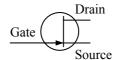
$$U_{CE} = U_{CB} + U_{BE}$$

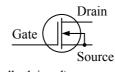
U_{B}	Betriebsspannung	V
U_{BE}	Basis-Emitter-Spannung	V
	(Basisvorspannung)	
U_{CE}	Kollektor-Emitter-Spannung	V
I_B	Basisstrom	A
I_C	Kollektorstrom	A
I_E	Emitterstrom	A
В	Gleichstromverstärkung	_
P_V	Verlustleistung	W

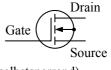
Schaltzeichen

Bipolar NPN Bipolar PNP




J-FET P-Kanal (Sperrschicht)

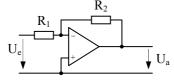

J-FET N-Kanal (Sperrschicht)


Isolierschicht-FET, IG-FET, MOS-FET (Verarmungstyp)

(Anreicherungstyp)

(selbstleitend)

(selbstsperrend)


Grundschaltungen bipolarer Transistoren

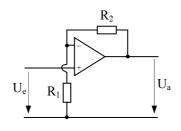
Schaltungsname	Emitterschaltung	Kollektorschaltung	Basisschaltung
Schaltungsbeispiel	+U _e Ausgang U _e . U _e . 0	+U _e +U _e +U _e Ausgang	Eingang +U _e Ausgang U _e U _e 0
Spannungsverstärkungsfaktor v_U	gross, z.B. 300	< 1, z.B. 0.5	gross, z.B. 100
Stromverstärkungsfaktor v_I	gross, z.B. 300	gross, z.B. 300	< 1, z.B. 0.5
Leistungsverstärkungsfaktor v _P	sehr gross, z.B. 30000	gross, z.B. 300	gross, z.B. 200
Phasenlage von U _{e~} zu U _{a~}	entgegengesetzt	gleich	gleich
Eingangswiderstand R _{ie}	mittel, z.B. 5 kΩ	gross, z.B. 50 kΩ	klein, z.B. 50 Ω
Ausgangswiderstand Ria	gross, z.B. 10 kΩ	klein, z.B. 100 Ω	gross, z.B. 10 kΩ
Anwendungsbeispiel	NF-Verstärker	NF-Eingangsverstärker	HF-Verstärker

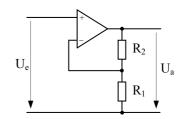
Operationsverstärker

Invertierende

$$v = \frac{R_2}{R_1} = -\frac{U_a}{U_e}$$

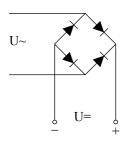
ν	Verstärkungsfaktor
U_a	Ausgangsspannung
	_

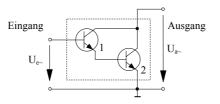

$$U_e$$
 Eingangsspannung V R Widerstand Ω


V

Nicht-Invertierende

$$v = 1 + \frac{R_2}{R_1}$$


$$U_a = U_e \cdot v$$


Graetz-Schaltung

(Zweipuls-Brückenschaltung)

Darlington-Schaltung

$$B_{total} = B_1 \cdot B_2$$

B Gleichstromverstärkung

Elektronenröhren

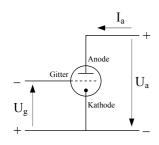
$$S = \frac{\Delta I_a}{\Delta U_g}$$

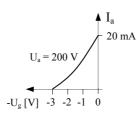
$$R = \frac{\Delta U_a}{\Delta I_a}$$

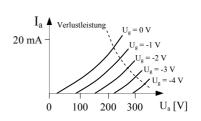
$$D = \frac{\Delta U_g}{\Delta U_a} = \frac{1}{\mu}$$

$$\mu = \frac{1}{D}$$

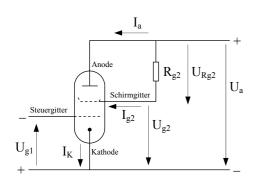
$$P_V = U_a \cdot I_a$$

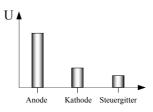

Barkhausensche Röhrenformel


$$S \cdot R \cdot D = 1$$


Bedingung: S:
$$U_a = const$$
 R: $U_g = const$ D: $I_a = const$

S	Steilheit	A/V
ΔI_a	Anodenstromänderung	\boldsymbol{A}
ΔU_{ξ}	g Gittervorspannungsänderung	V
R	Innenwiderstand	Ω
ΔU_{α}	a Anodenspannungsänderung	V
D	Durchgriff	_
μ	Verstärkungsfaktor	_
P_V	Verlustleistung	W
U_a	Anodenspannung (Betrieb-)	V
I_a	Anodenstrom	\boldsymbol{A}


Triode



Tetrode

$R_{g2} = \frac{U_a - U_{g2}}{I_{g2}}$

$$U_{Rg2} = U_a - U_{g2}$$

$$I_K = I_a + I_{g2}$$

Pentode

Das Bremsgitter ist in der Regel mit der Kathode verbunden.

Dezibel

$$v = 10 \cdot \log \frac{P_2}{P_1}$$

$$P_2 = P_1 \cdot 10^{\frac{v}{10}}$$

$$P_2 = P_1 \cdot F \qquad \qquad F = 10^{\frac{v}{10}}$$

Spannungsverstärkung

v: Verstärkung [dB] F: Verstärkungsfaktor []

$$v = 20 \cdot \log \frac{U_2}{U_1} = 20 \cdot \log \frac{I_2}{I_1}$$
 $U_2 = U_1 \cdot 10^{\frac{v}{20}}$

$$U_2 = U_1 \cdot 10^{\frac{v}{20}}$$

$$U_2 = U_1 \cdot F \qquad F = 10^{\frac{\nu}{20}}$$

$$F = 10^{\frac{v}{20}}$$

Leistungsdämpfung *

$$P_2 = P_1 \cdot 10^{-1}$$

$$a = 10 \cdot \log \frac{P_1}{P_2}$$

$$P_2 = P_1 \cdot 10^{-\frac{a}{10}}$$
 $P_2 = P_1 \cdot F$ $F = 10^{-\frac{a}{10}}$

$$P_2 = P_1 \cdot F$$

$$F = 10^{-\frac{a}{10}}$$

Spannungsdämpfung *

$$a = 20 \cdot \log \frac{U_1}{U_2} = 20 \cdot \log \frac{I_1}{I_2} \qquad U_2 = U_1 \cdot 10^{-\frac{a}{20}} \qquad U_2 = U_1 \cdot F \qquad F = 10^{-\frac{a}{20}}$$

$$F = 10^{-\frac{a}{20}}$$

Antennengewinn

dBd – Antennengewinn bezüglich λ/2-Dipol

$$G = 20 \cdot \log \left(\frac{U_{\text{max}}}{U_{Dipol}} \right)$$

Das i in dBi steht für isotrop (isotroper Kugelstrahler)

Das d in dBd steht für Dipol

Das c in dBc steht für Carrier (bezüglich dem Träger) ERP: Effective Radiated Power (bezüglich Dipol)

EIRP: Effective Isotropic Radiated Power (bezüglich isotropem Kugelstrahler)

dBi – Antennengewinn bezüglich Kugelstrahler

Ein Dipol hat gegenüber einem Kugelstrahler bereits 2.15 dB Gewinn.

$$G_{bez.Kugelstrahler} = G_{bez.Dipol} + 2.15$$

$$P_{EIRP} = 1.64 \cdot P_{ERP}$$

Absolute Pegel

Absolute Leistungspegel

$$a_{dBm} = 10 \cdot \log \frac{P}{P_{ref}}$$

$$P = P_{ref} \cdot 10^{\frac{a_{dBm}}{10}}$$

$$P = P_{ref} \cdot 10^{\frac{a_{dBm}}{10}}$$

Bezugswert: $0 \text{ dBm} = 1 \text{ mW (oft an } 50 \Omega)$

absoluter Leistungspegel dBm a_{dBm} P W Leistung

 P_{ref} Bezugsleistungspegel 1 mW

Bezugswert: $0 \text{ dB}\mu\text{V} = 1 \mu\text{V}$ (oft an 50 Ω)

absoluter Spannungspegel $dB\mu V$ $a_{dB\mu V}$ USpannung

VBezugsspannungspegel 1 μV U_{ref}

Absoluter Feldstärkepegel

Absoluter Spannungspegel

$$a_{dB(\mu V/m)} = 20 \cdot \log \frac{E}{E_{ref}} \qquad E = E_{ref} \cdot 10^{\frac{a_{dB(\mu V/m)}}{20}}$$

 $a_{dB\mu V} = 20 \cdot \log \frac{U}{U_{ref}} \qquad \qquad U = U_{ref} \cdot 10^{\frac{a_{dB\mu V}}{20}} \label{eq:udbmV}$

Bezugswert: $0 dB(\mu V/m) = 1 \mu V/m$

 $a_{dB(\mu V/m)}$ absolute Feldstärkepegel $dB(\mu V/m)$ Ε Feldstärke V/mBezugsfeldstärkepegel 1 µV/m E_{ref} V/m

W

^{*} Achtung: negative Exponenten!

Modulation

$$\begin{split} &U_{T}(t) = \hat{U}_{T} \cdot \sin(\omega_{T} \cdot t \pm \varphi_{T}) \\ &U_{AM}(t) = \underbrace{k \cdot U_{M}(t)}_{AM} \cdot \sin(\omega_{T} \cdot t \pm \varphi_{T}) \\ &U_{FM}(t) = \hat{U}_{T} \cdot \sin(\underbrace{k \cdot U_{M}(t)}_{EM} \cdot t \pm \varphi_{T}) \end{split}$$

 $U_M(t) = \hat{U}_M \cdot \sin(\omega_M \cdot t \pm \varphi_M)$

$$FM = C_T \quad \text{Sin}(t) \quad C_M(t) \quad t = \psi_T$$

$$U_{PM}(t) = \hat{U}_T \cdot \sin(\omega_T \cdot t \pm \underbrace{k \cdot U_M(t)}_{PM})$$

AM Amplitudenmodulation

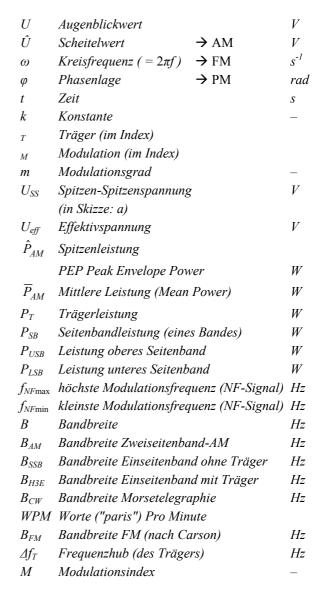
$$m = \frac{\hat{U}_M}{\hat{U}_T} = \frac{\hat{U}_{NF}}{\hat{U}_{HF}} \cdot (100\%) \qquad 0 \le m \le 1$$

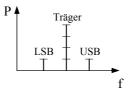
$$m = \frac{a - b}{a + b}$$

$$U_{SB} = U_{LSB} = U_{USB} = \frac{m}{2} \cdot U_T$$

$$\hat{P}_{AM} = \frac{U_{eff}^2}{R} = \frac{U_{SS}^2}{8 \cdot R} = (1 + m)^2 \cdot P_T$$

$$\overline{P}_{AM} = P_T + 2 \cdot P_{SB} = \left(1 + \frac{m^2}{2}\right) \cdot P_T$$


$$P_{SB} = P_{USB} = P_{LSB}$$


$$P_{SB} = \frac{P_{AM} - P_T}{2} = \frac{1}{4} \cdot m^2 \cdot P_T = \frac{1}{2 + \frac{4}{m^2}} \cdot \overline{P}_{AM}$$

$$\overline{P}_{SB} = \frac{U_{SB}^2}{R} = \frac{1}{6} \cdot \overline{P}_{AM}$$

$$P_{NF} = 2 \cdot \left(P_{LSB} + P_{USB} \right) = 2 \cdot P_{SB}$$

$$B_{AM} = 2 \cdot f_{NF \text{ max}}$$

SSB Einseitenband-AM

$$B_{SSB} = f_{NF \text{ max}} - f_{NF \text{ min}}$$
 $B_{H3E} = f_{NF \text{ max}}$

$$B_{CW} \approx \frac{WPM \cdot 5}{1.2}$$

FM Frequenzmodulation

$$B_{FM} = 2 \cdot (\Delta f_T + f_{NF \text{ max}}) = 2 \cdot (M+1) \cdot f_{NF \text{ max}}$$

$$M = \frac{\Delta f_T}{f_{NF \text{ max}}} = \frac{B_{FM}}{2 \cdot f_{NF \text{ max}}} - 1$$

Spiegelfrequenz

$$f_{sp} > f_o$$
:
 $f_{sp} = f_o + f_{ZF} = f_e + 2 \cdot f_{ZF}$

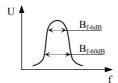
$$f_{sp} < f_o$$
:
 $f_{sp} = f_o - f_{ZF} = f_e - 2 \cdot f_{ZF}$

$$f_{sp}$$
 Spiegelfrequenz Hz f_o Oszillatorfrequenz Hz

$$f_e$$
 Eingangsfrequenz Hz

$$f_{ZF}$$
 Zwischenfrequenz = const. Hz

Intermodulationsprodukte


2. Ordnung
$$f_1 \pm f_2$$

3. Ordnung
$$2 \cdot f_2 \pm f_1$$
 und $2 \cdot f_1 \pm f_2$

$$f_1$$
 Frequenz Sender 1 Hz
 f_2 Frequenz Sender 2 Hz
besonders störend, wenn f_1 und f_2 innerhalb
Nutzfrequenzbereich: $2f_2 - f_1$ und $2f_1 - f_2$

Trennschärfe

Formfaktor
$$F = \frac{B_{f-60dB}}{B_{f-6dB}}$$

Feldstärke

im Fernfeld: $r > 4\lambda ... 10\lambda$:

$$E = \frac{U}{d}$$

für gleichstark empfangene Sender:

$$\frac{P_1}{{d_1}^2} = \frac{P_2}{{d_2}^2}$$

$$\frac{U_1}{U_2} = \frac{d_2}{d_1}$$

$$\frac{{U_1}^2}{P_1} = \frac{{U_2}^2}{P_2}$$

Wellenlänge

$$c = f \cdot \lambda$$

$$f = \frac{c}{\lambda}$$

$$\lambda = \frac{c}{f}$$

$$l \cdot \lambda$$

$$[f] = MHz$$
, $[\lambda] = m$:

$$f = \frac{300}{\lambda}$$

$$\lambda = \frac{300}{f}$$

$$l_m$$
 mech. Länge des $\lambda/2$ -Dipols m

$$l_m = \frac{k_V \cdot c}{2 \cdot f}$$

$$k_V = \frac{1}{\sqrt{\varepsilon_r}}$$

$$k_V$$
 Verkürzungsfaktor – typischer Verkürzungsfaktor = 0.97

$$\varepsilon_r$$
 relative Dielektrizitätszahl (Luft = 1)

Wellenwiderstand

$$Z_L = Z_W = \sqrt{\frac{L}{C}}$$

HF-Anpassung (reflexionsfrei)

$$\ddot{u} = \frac{N_1}{N_2} = \sqrt{\frac{Z_1}{Z_2}}$$

$$\ddot{u} = \frac{N_1}{N_2} = \sqrt{\frac{Z_1}{Z_2}} \qquad \qquad \boxed{Z_1 \qquad N_1} \left\{ \begin{bmatrix} N_2 & Z_2 \end{bmatrix} \right\}$$

Stehwellen

$$SWR = \frac{U_{\max}}{U_{\min}} = \frac{U_V + U_R}{U_V - U_R} = \frac{\sqrt{P_V} + \sqrt{P_R}}{\sqrt{P_V} - \sqrt{P_R}} = \sqrt{\frac{1 + \rho}{1 - \rho}}$$

$$\rho = \sqrt{\frac{P_R}{P_V}} = \left(\frac{SWR - 1}{SWR + 1}\right)^2 \cdot 100\%$$

$$SWR = \frac{R_a}{Z} \quad \text{für } R_a \ge Z$$

$$SWR = \frac{Z}{R_a}$$
 für $R_a \le Z$

SWR Standing Wave Ratio Stehwellenverhältnis

Z_L Wellenwiderstand /

L

ü

N

Z

Wellenimpedanz

Kabelinduktivität

Übersetzungsverhältnis

Kabelkapazität

Windungszahl

Impedanz

Primärseite Sekundärseite Ω

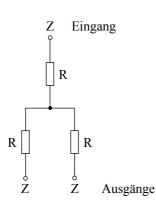
Н

F

Ω

 U_{max} max. Spannung auf Leitung U_{min} min. Spannung auf Leitung U_V hinlaufende Spannung VV U_R rücklaufende Spannung P_V Whinlaufende Leistung rücklaufende Leistung W P_R

Reflexionsfaktor


 $SWR = 3 \rightarrow 25 \%$ $SWR = 2 \rightarrow 11 \%$ Antennen- / Abschlusswiderstand Ω R_a ZWellenwiderstand Zuleitung Ω

HF-Verteiler

$$R = Z \cdot \frac{n-1}{n+1}$$

$$U_A = \frac{U_E}{n}$$

 $a = 20 \cdot \log n$

Bedingung: impedanzrichtige Verteilung. Symmetrische Schaltung (alle Anschlüsse/Tore sind gleich)

Entkopplungswiderstand Ω

Z*Impedanz* Ω

Anzahl Ausgänge

(n Ausgänge + 1 Eingang = Anzahl Anschlüsse/Tore)

V U_A Ausgangsspannung V U_E Eingang

Dämpfung dB

Rauschen

$$\begin{split} P_R &= 4 \cdot k \cdot T \cdot B \\ U_N &= 2 \cdot \sqrt{k \cdot T \cdot B \cdot R} \\ F &= \frac{SNR_{Eingang}}{SNR_{Ausgang}} \\ NF &= SNR_{Eingang} - SNR_{Ausgang} \\ NF &= 10 \cdot \log(F) \qquad F = 10^{\frac{NF}{10}} \\ SNR &= 20 \cdot \log \frac{U_S}{U_N} = 10 \cdot \log \frac{P_S}{P_N} \\ SINAD &= 20 \cdot \log \left(\frac{U_S + U_N + U_D}{U_N + U_D} \right) \end{split}$$

F	P_S Signalleistung	W
F	P_R Rauschleistung	W
k	Boltzmann-Konstante	
	$1.380658 \cdot 10^{-23}$	J/K
7	Temperatur	K
Į	J_S Signalspannung	V
Į	J_N Rauschspannung	V
Į	V_D Verzerrungsspannung	V
F	Widerstand, welcher rauscht	Ω
F	Rauschfaktor, Rauschzahl	_
Λ	F Noise Figure (Rauschzahl)	dΒ
E	Bandbreite	Ηz
S	NR Signal-Rausch-Abstand	dΒ
S	INAD Signal, Noise and Distortion	dΒ

Klirrfaktor und Übersprechen

$$d = \frac{\sqrt{U_2^2 + U_3^2 + \dots}}{\sqrt{U_1^2 + U_2^2 + \dots}}$$

$$a_d = 10 \cdot \log \frac{1}{d}$$

$$a_{ct(2 \to 1)} = 20 \cdot \log \frac{U_{Nutz(Kanal1)}}{U_{Stör(Kanal2)}}$$

d	Klirrfaktor	_
U_1	Grundschwingung	V
U_{2}	Oberschwingungen	V
a_d	Klirrdämpfungsmass	dB
a _{ct(2}	→1) Übersprechdämpfungsmass	dB

S-Meter - Wertvorzeichen

S-Stufe	KW	UKW
S9+60dB	50 mV	5 mV
S9+40dB	5 mV	500 μV
S9+20dB	500 μV	50 μV
S9	50 μV	5 μV
S8	25 μV	2.5 μV
S7	12.5 μV	1.25 μV
S6	6.25 μV	0.63 μV
S5	3.13 μV	0.31 μV
S4	1.56 μV	0.16 μV
S3	0.78 μV	0.08 μV
S2	0.39 μV	0.04 μV
S1	0.19 μV	0.02 μV

Zehnerpotenz	Abkürzung	Bezeichnung
10 ¹⁵	P	Peta
1012	T	Tera
109	G	Giga
10^{6}	M	Mega
10 ⁴	Ma	Myria
10^{3}	k	Kilo
10 ²	h	Hekto
10 ¹	da	Deka
10-1	d	Dezi
10-2	c	Zenti
10-3	m	Milli
10-6	μ	Mikro
10-9	n	Nano
10-12	p	Pico
10 ⁻¹⁵	f	Femto
10 ⁻¹⁸	a	Atto

Inhaltsverzeichnis

Geordnet nach Seitenzahl

Alphabetisch geordnet

Widerstand	2	Absolute Pegel	15
Kondensator	2	Antennengewinn	15
Spule	$\overset{2}{2}$	Darlington-Schaltung	13
URI	2	Dezibel	15
РИ	2	Dezibel-Pegel	10
Kirchhoffsche Gesetze	3	Elektronenröhren	14
Messbrücke	3	Feldstärke	17
Spannungsteiler	3	Filter	11
Innenwiderstand	4	Graetz-Schaltung	13
Messbereichserweiterung	4	HF-Anpassung (reflexionsfrei)	18
Transformator	4	HF-Verteiler	18
Wirkungsgrad	4	Impedanz und Blindwiderstand	7
Leistungsanpassung	5	Inhaltsverzeichnis	20
Kondensator	5	Innenwiderstand	4
Spule und magnetisches Feld	6	Intermodulationsprodukte	17
Impedanz und Blindwiderstand	7	Kirchhoffsche Gesetze	3
Leistung im Wechselstromkreis	7	Klirrfaktor und Übersprechen	19
Schwingung	8	Kondensator	2
Schwingkreise	8	Kondensator	5
Oszillator	10	Leistung im Wechselstromkreis	7
Dezibel-Pegel	10	Leistungsanpassung	5
Filter	11	Messbereichserweiterung	4
Transistor	12	Messbrücke	3
Operationsverstärker	13	Modulation	16
Graetz-Schaltung	13	Operationsverstärker	13
Darlington-Schaltung	13	Oszillator	10
Elektronenröhren	14	PUI	2
Dezibel	15	Rauschen	19
Antennengewinn	15	Schwingkreise	8
Absolute Pegel	15	Schwingung	8
Modulation	16	S-Meter – Wertvorzeichen	19
Spiegelfrequenz	17	Spannungsteiler	3
Intermodulationsprodukte	17	Spiegelfrequenz	17
Trennschärfe	17	Spule	2
Feldstärke	17	Spule und magnetisches Feld	6
Wellenlänge	17	Stehwellen	18
Wellenwiderstand	18	Transformator	4
HF-Anpassung (reflexionsfrei)	18	Transistor	12
Stehwellen	18	Trennschärfe	17
HF-Verteiler	18	URI	2
Rauschen	19	Wellenlänge	17
Klirrfaktor und Übersprechen	19	Wellenwiderstand	18
S-Meter – Wertvorzeichen	19	Widerstand	2
Inhaltsverzeichnis	20	Wirkungsgrad	4

Potenzen, Pegel, Kennfarben

·	Pegel	Leistungs- verhältnis	Spannungs- verhältnis	Kenn- farbe	Wert	Multi- plikator	Toleranz
$ \begin{array}{c} \vdots \\ 10^{-3} = 0,001 \\ 10^{-2} = 0,01 \\ 10^{-1} = 0,1 \\ 10^{0} = 1 \\ 10^{1} = 10 \\ 10^{2} = 100 \\ 10^{3} = 1000 \\ \vdots \end{array} $	-20 dB -10 dB -6 dB -3 dB -1 dB 0 dB 1 dB 3 dB 6 dB 10 dB	0,01 0,1 0,25 0,5 0,8 1 1,26 2 4	0,1 0,32 0,5 0,71 0,89 1	Silber Gold schwarz braun rot orange gelb grün blau violett grau weiß	- 0 1 2 3 4 5 6 7 8	$ \begin{array}{c} 10^{-2} \\ 10^{-1} \\ 10^{-0} \\ 10^{1} \\ 10^{2} \\ 10^{3} \\ 10^{4} \\ 10^{5} \\ 10^{6} \\ 10^{7} \\ 10^{8} \\ 10^{9} \end{array} $	±10% ±5% - ±1% ±2% - ±0,5 ±0,25% ±0,1%
•	20 dB	100	10	keine	-	-	±20%

Wertkennzeichnung durch Buchstaben

p	Pico	10 ⁻¹²
n	Nano	10 ⁻⁹

μ	Mikro	10 ⁻⁶
m	Milli	10 ⁻³

		10°
k	Kilo	10^{3}

M	Mega	10 ⁶
G	Giga	109

Ohmsches Gesetz

$$U = I \cdot R$$

Leistung

$$P = U \cdot I = \frac{U^2}{R} = I^2 \cdot R$$

Arbeit

$$W = P \cdot t$$

Widerstand von Drähten

$$R = \frac{\rho \cdot l}{A_{Dr}}$$

$$R = \frac{\rho \cdot l}{A_{Dr}}$$
 $A_{Dr} = \frac{d^2 \cdot \pi}{4} = r^2 \cdot \pi$

Widerstände in Reihenschaltung

$$R_G = R_1 + R_2 + R_3 + \dots R_n$$

Bei 2 Widerständen gilt

$$\frac{U_1}{U_2} = \frac{R_1}{R_2}$$

$$U_G = U_1 + U_2$$

Widerstände in Parallelschaltung

$$\frac{1}{R_G} = \frac{1}{R_1} + \frac{1}{R_2} + \frac{1}{R_3} + \dots + \frac{1}{R_n}$$

Bei 2 Widerständen gilt

$$R_G = \frac{R_1 \cdot R_2}{R_1 + R_2} \qquad \qquad \frac{I_2}{I_1} = \frac{R_1}{R_2} \qquad \qquad I_G = I_1 + I_2$$

$$\frac{I_2}{I_1} = \frac{R_1}{R_2}$$

$$I_G = I_1 + I_2$$

Innenwiderstand

$$R_i = \frac{\Delta U}{\Lambda I}$$

Effektiv- und Spitzenwerte bei sinusförmiger Wechselspannung

$$\hat{U} = U_{\it eff} \cdot \sqrt{2}$$

$$U_{SS} = 2 \cdot \hat{U}$$

Periodendauer

$$T = \frac{1}{f}$$

Kreisfrequenz

$$\omega = 2 \cdot \pi \cdot f$$

Induktiver Widerstand

$$X_I = \omega \cdot L$$

Induktivitäten in Reihenschaltung

$$L_G = L_1 + L_2 + L_3 + \dots L_n$$

Induktivitäten in Parallelschaltung

$$\frac{1}{L_G} = \frac{1}{L_1} + \frac{1}{L_2} + \frac{1}{L_3} + \dots \frac{1}{L_n}$$

Induktivität der Ringspule

(auch für Zylinderspule wenn l > D)

$$L = \frac{\mu_0 \cdot \mu_r \cdot N^2 \cdot A_S}{l_m}$$

Induktivität von Schalenkernspulen

(auch für mehrlagige Spulen)

$$L = N^2 \cdot A_L$$

Magnetische Feldstärke in einer Ringspule

$$H = \frac{I \cdot N}{l_m}$$

Magnetische Flussdichte

$$B_m = \mu_r \cdot \mu_0 \cdot H$$

Transformator / Übertrager

Übersetzungsverhältnis

$$\ddot{u} = \frac{N_P}{N_S} = \frac{U_P}{U_S} = \frac{I_S}{I_P} = \sqrt{\frac{Z_P}{Z_S}}$$

Netztrafo

$$P_P \approx 1.2 \cdot P_S$$
 $A_{Fe} \approx \sqrt{P_P} \cdot \frac{cm^2}{\sqrt{W}}$ $N_V \approx \frac{42}{A_P} \cdot \frac{cm^2}{V}$

$$N_V \approx \frac{42}{A_{Fa}} \cdot \frac{cm^2}{V}$$

 P_P ... Primärleistung; P_S ... Sekundärleistung

Belastbarkeit von Wicklungen

$$I = S \cdot A_{Dr}$$
 mit $S \approx 2.5 A/mm^2$

Kapazitiver Widerstand

$$X_C = \frac{1}{\omega \cdot C}$$

Kondensatoren in Reihenschaltung

$$\frac{1}{C_G} = \frac{1}{C_1} + \frac{1}{C_2} + \frac{1}{C_3} + \dots \frac{1}{C_n}$$

Kondensatoren in Parallelschaltung

$$C_G = C_1 + C_2 + C_3 + \dots + C_n$$

Kapazität eines Kondensators

$$C = \varepsilon_0 \cdot \varepsilon_r \cdot \frac{A}{d}$$

 $C = \varepsilon_0 \cdot \varepsilon_r \cdot \frac{A}{d}$ A ... Kondensatorplattenfläche

Elektrische Feldstärke

$$E = \frac{U}{d}$$

RC-Tiefpass / RC-Hochpass

$$f_g = \frac{1}{2 \cdot \pi \cdot R \cdot C}$$

$$f_{\rm g}$$
 ... Grenzfrequenz

RL-Tiefpass / RL-Hochpass

$$f_g = \frac{R}{2 \cdot \pi \cdot L}$$

Schwingkreis

$$f_0 = \frac{1}{2 \cdot \pi \cdot \sqrt{L \cdot C}}$$

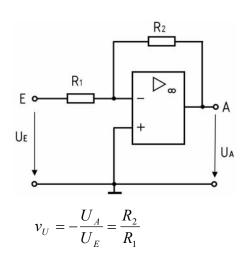
$$f_0 = \frac{1}{2 \cdot \pi \cdot \sqrt{L \cdot C}} \qquad Q = \frac{f_0}{B} = \frac{R_p}{X_L} = \frac{X_L}{R_c}$$

Transistor

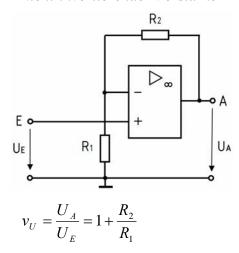
$$B = \frac{I_C}{I_B}$$

$$I_E = I_C + I_B$$

B ... Gleichspannungsverstärkung


$$v_I = \beta = \frac{\Delta I_C}{\Delta I_R}$$

$$v_U = \frac{\Delta U_{CE}}{\Delta U_{BE}}$$


$$v_P = v_U \cdot v_I$$

Operationsverstärker

Invertierender Verstärker

Nicht-invertierender Verstärker

Pegel

$$u = 20 \cdot \lg \frac{U}{U_0} \qquad p = 10 \cdot \lg \frac{P}{P_0}$$

$$p = 10 \cdot \lg \frac{P}{P_0}$$

Relativer Pegel: Als Spannungs- oder Leistungspegel bezogen auf beliebige Werte von U_0 oder P_0 (z.B. $1\mu V$, 1V, 1W, 1pW) Absoluter Pegel: 0 dB (dBm, dBu) liegt bei $P_0 = 1$ mW oder der Spannung $U_0 = 775$ mV bei einem System mit $R_I = R_L = 600 \Omega$ vor. Der absolute Leistungspegel ist auch bei Systemen mit anderen Impedanzen gleich.

Dämpfung

$$a = 20 \cdot \lg \frac{U_1}{U_2}$$

$$a = 10 \cdot \lg \frac{P_1}{P_2}$$

 $a = 20 \cdot \lg \frac{U_1}{U_2}$ $a = 10 \cdot \lg \frac{P_1}{P_2}$ $U_1 \dots Eingangsspannung$ $U_2 \dots Ausgangsspannung$

 P_1 ... Eingangsleistung

Verstärkung/Gewinn

$$g = 20 \cdot \lg \frac{U_2}{U_1}$$

$$g = 10 \cdot \lg \frac{P_2}{P_1}$$

 P_2 ... Ausgangsleistung

Wirkungsgrad

$$\eta = \frac{P_{ab}}{P_{zu}}$$

$$\eta_{\%} = \frac{P_{ab}}{P_{ab}} \cdot 100\%$$

$$P_{ab} = P_{zu} - P_V$$

Zwischenfrequenz

$$f_{ZF} = f_E \pm f_{OSZ}$$

Spiegelfrequenz

$$f_S = f_E + 2 \cdot f_{ZF}$$
 für $f_{OSZ} > f_E$

$$f \ddot{u} r \quad f_{OSZ} > f_{R}$$

$$f_S = f_E - 2 \cdot f_{ZF}$$
 für $f_{OSZ} < f_E$

für
$$f_{osz} < f_{s}$$

Thermisches Rauschen

$$P_R = k \cdot T_K \cdot B$$

 $U_{P} = 2 \cdot \sqrt{P_{P} \cdot R}$

$$\Delta p_R = 10 \cdot \lg \frac{B_1}{B_2}$$

 $P_R = k \cdot T_K \cdot B$ $\Delta p_R = 10 \cdot \lg \frac{B_1}{B_2}$ $P_R \dots Rauschleistung$ $\Delta p_R \dots Pegelunterschied$ der Rauschleistungen in B_1 und B_2

Signal-Rauschverhältnis

$$S/N = 10 \cdot \lg \frac{P_S}{P_N} = 20 \cdot \lg \frac{U_S}{U_N}$$

 P_S ... Signalleistung P_N ... Rauschleistung

 U_S ... Signalspannung $U_N \dots Rauschspannung$

Rauschzahl

$$F = \frac{\left(\frac{P_S}{P_N}\right)_{EINGANG}}{\left(\frac{P_S}{P_N}\right)_{AUSGANG}} \qquad a_F = 10 \cdot \lg F \\ a_F = (S/N)_{EINGANG} - (S/N)_{AUSGANG}$$

$$a_F = 10 \cdot \lg F$$

$$a_F = (S/N)_{\text{trigging}} - (S/N)_{\text{trigging}}$$

ERP/EIRP

$$p_{ERP} = p_S - a + g_d$$

$$p_{ERP} = p_S - a + g_d$$
 $P_{ERP} = P_S \cdot 10^{\frac{g_d - a}{10}}$

g_d ... Antennengewinn bezogen auf den Halbwellendipol in dB

$$p_{EIRP} = p_{ERP} + 2,15dB$$

$$p_{EIRP} = p_{ERP} + 2,15dB$$
 $P_{EIRP} = P_S \cdot 10^{\frac{g_d - a + 2,15dB}{10}}$

a ... Verluste (Kabel, *Koppler etc.)*

Gewinnfaktor von Antennen

$$G_i = G_d \cdot 1,64$$

$$G_i = G_d \cdot 1,64$$
 $g_i = g_d + 2,15dB$ $G = 10^{\frac{g}{10}}$

$$G - 10^{\frac{g}{10}}$$

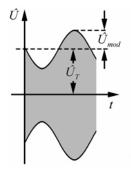
Halbwellendipol

$$G_i = 1,64$$

$$G_i = 1,64$$
 $g_i = 2,15 \, dBi$

$$G_i = 3,28$$

$$g_i = 5,15 dBi$$


Feldstärke im Fernfeld einer Antenne*)
$$E = \frac{\sqrt{30\Omega \cdot P_A \cdot G_i}}{d} = \frac{\sqrt{30\Omega \cdot P_{EIRP}}}{d}$$

*) für Freiraumausbreitung ab $d > \frac{\lambda}{2 \cdot \pi}$; P_{A} ... Leistung an der Antenne

Amplitudenmodulation

$$m = \frac{\hat{U}_{mod}}{\hat{U}_T}$$

$$B = 2 \cdot f_{mod \, max}$$

Frequenzmodulation

$$m = \frac{\Delta f_T}{f_{mod}}$$

$$\Delta f_T$$
 ... Frequenzhub

Carson-Bandbreite (Ungefähre FM-Bandbreite)

$$B = 2 \cdot (\Delta f_T + f_{mod \, max})$$

Phasengeschwindigkeit

$$c = f \cdot \lambda$$

Verkürzungsfaktor von HF-Leitungen

$$k_v = \frac{l_G}{l_E} = \frac{1}{\sqrt{\varepsilon}} = \frac{c}{c_0}$$

$$l_G$$
 ... geometrische Länge l_E ... elektrische Länge

Stehwellenverhältnis/VSWR

$$s = \frac{U_{\text{max}}}{U_{\text{min}}} = \frac{U_{\text{v}} + U_{r}}{U_{\text{v}} - U_{r}} \qquad \qquad s = \frac{1 + \left|r\right|}{1 - \left|r\right|} \qquad \text{mit} \qquad r = \frac{R_{2} - Z}{R_{2} + Z}$$

$$s = \frac{1+|r|}{1-|r|} \qquad \mathsf{m}$$

$$mit r = \frac{R_2 - Z}{R_2 + Z}$$

$$s = \frac{R_2}{Z}$$
 wenn $R_2 > Z$ und $s = \frac{Z}{R_2}$ wenn $R_2 < Z$

Reflektionsfaktor

$$|r| = \frac{s-1}{s+1} = \frac{U_r}{U_v} = \sqrt{\frac{P_r}{P_v}}$$

Rücklaufende Leistung

$$P_r = P_v \cdot r^2$$
 mit $P_r \neq P_v$

*An R*₂ *abgegebene Leistung*

$$P_{ab} = P_{v} \cdot (1 - r^2)$$

Dämpfung durch Fehlanpassung

$$a_s = -10 \cdot \lg(1 - r^2)$$

 U_v ... Spannung der hinlaufenden Welle; U_r ... Spannung der rücklaufenden Welle;

 $Z \dots Wellenwiderstand der HF-Leitung$; $R_2 \dots reeller Abschlusswiderstand der HF-Leitung$;

 P_v ... vorlaufende Leistung; P_r ... rücklaufende (reflektierte) Leistung; P_{ab} ... Leistung an R_2

Wellenwiderstand

$$Z = \sqrt{\frac{L'}{C'}}$$

$$Z = \frac{60\Omega}{\sqrt{\varepsilon_r}} \cdot \ln \frac{D}{d}$$

 $Z = \frac{60\Omega}{\sqrt{\varepsilon_r}} \cdot ln \frac{D}{d}$ D... Innendurchmesser Außenleiter d... Durchmesser des Innenleiters

Symmetrische Zweidraht-
Leitungen mit
$$a/d > 2.5$$

$$Z = \frac{120\Omega}{\sqrt{\varepsilon_r}} \cdot ln \frac{2 \cdot a}{d}$$

a ... Mittenabstand der Leiter d ... Durchmesser der Leiter

Viertelwellentransformator

$$Z = \sqrt{Z_E \cdot Z_A}$$

Z ... erforderlicher Wellenwiderstand einer λ_{4} -Transformationsleitung

Höchste brauchbare Frequenz

$$MUF = \frac{f_c}{\sin \alpha}$$

$$f_{opt} = MUF \cdot 0.85$$

Empfindlichkeit von Messsystemen

$$E_{MESS} = \frac{R_i}{U_i} = \frac{1}{I_i}$$

 E_{MESS} ... Empfindlichkeit in Ω/V *U_i* ... Spannung am System bei Vollaus-

I_i ... Strom durch das System bei Vollausschlag

Messbereichserweiterung

$$R_V = \frac{U - U_M}{I_M} = \frac{U_M}{I_M} \cdot (n - 1) = R_M \cdot (n - 1)$$

$$R_P = \frac{R_M \cdot I_M}{I - I_M} = \frac{R_M}{n - 1}$$

Erweiterungsfaktor

 $U \dots$ neuer Spannungsmessbereich U_{M} ... Spannungsmessbereich des Instruments

I ... neuer Strommessbereich

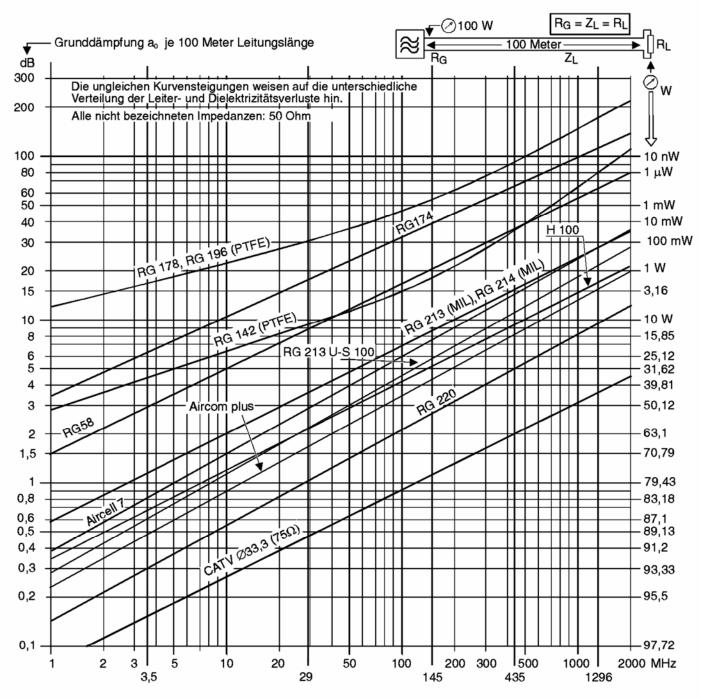
 $I_M \dots$ Strom bei Vollausschlag des Instruments

 R_V ... Vorwiderstand

 $R_P \dots$ Parallelwiderstand (Shunt)

Relativer maximaler Fehler

$$F_W = \pm \frac{G}{100} \cdot \frac{W_E}{W_M}$$


 F_W ... relativer maximaler Fehler (in %);

G ... Genauigkeitsklasse des Messinstrumentes;

 W_E ... Endwert des Messbereichs;

W_M ... abgelesener Wert (Istwert)

Kabeldämpfungsdiagramm

Grunddämpfung verschiedener gebräuchlicher Koaxleitungen in Abhängigkeit von der Betriebsfrequenz für eine Länge von 100 m.

Formelzeichen, Konstanten und Tabellen

Sofern bei der jeweiligen Formel nicht anders angegeben, gilt:

A ... Querschnitt, Fläche

A_{Dr} ... Drahtquerschnitt

 A_{Fe} ... Eisenkernquerschnitt

 A_L ... Induktivitätsfaktor in nH

A_S ... Querschnittsfläche der Spule

a ... Dämpfungsmaß in dB

a_F ... Rauschzahl in dB gemessen mit Eingangsabschluss bei 290 K

B, B_1 , B_2 ... Bandbreiten

 B_m ... magnetische Flussdichte

C ... Kapazität

C' ... Kapazitätsbelag (Kapazität pro Meter)

 C_G ... Gesamtkapazität

 C_1 , C_2 , C_3 , C_n ... Teilkapazitäten

c ... Phasengeschwindigkeit

 c_0 ... Vakuumlichtgeschwindigkeit, $c_0 = 3 \cdot 10^8 \frac{m}{s}$

d ... Abstand, Entfernung

E ... elektrische Feldstärke

EIRP ... äquivalente isotrope Strahlungsleistung ERP ... äquivalente (effektive) Strahlungsleistung

e ... Eulersche Zahl, e=2,718...

F... Rauschzahl (Eingangsabschluss bei 290K)

f ... Frequenz

 f_c ... Höchste Frequenz, bei der senkrecht in die Ionosphäre eintretende Strahlung von der gegebenen Schicht noch reflektiert wird

 f_E ... eingestellte Empfangsfrequenz

 f_{g} ... Grenzfrequenz

 f_{mod} ... Modulations frequenz

f_{modmax} ... höchste Modulationsfrequenz

 f_{opt} ... optimale Frequenz

 f_{OSZ} ... Oszillatorfrequenz

 f_S ... Spiegelfrequenz

 f_{ZF} ... Zwischenfrequenz

 f_0 ... Resonanzfrequenz

G ... Gewinnfaktor

 G_d ... Gewinnfaktor bezogen auf den Halbwellendipol

 G_i ... Gewinnfaktor bezogen auf den isotropen Strahler

g ... Verstärkungsmaß/Gewinn in dB

 g_d ... Gewinn in dB bezogen auf den Halbwellendipol

g_i ... Gewinn in dB bezogen auf den isotropen Strahler

H... magnetische Feldstärke

I ... Stromstärke

I_B ... *Basisgleichstrom*

 I_C ... Kollektorgleichstrom

I_E ... *Emittergleichstrom*

 I_G ... Gesamtstrom

I_P ... *Primärstromstärke*

I_S ... Sekundärstromstärke

 I_1 , I_2 ... Teilströme

 $k \dots Boltzmann-Konstante, k = 1,38 \cdot 10^{-23} Ws/K$

k_v ... Verkürzungsfaktor

L ...Induktivität

L' ... Induktivitätsbelag (Induktivität pro Meter)

L_G ... Gesamtinduktivität

 L_1 , L_2 , L_3 , L_n ... Teilinduktivitäten

l ... Länge

l_m ... mittlere Feldlinienlänge

MUF ... Höchste brauchbare Frequenz bei der Ausbreitung elektromagnetischer Wellen infolge ionosphärischer Brechung

m ... Modulationsindex

N ... Windungszahl

 $N_P \dots Primärwindungszahl$

 N_S ... Sekundärwindungszahl

 N_V ... Windungszahl pro Volt

P ... Leistung

 P_R ... Rauschleistung

 P_S , P_{ERP} , P_{EIRP} ... Sender-/ Strahlungsleistungen

 P_V ... Verlustleistung

 P_{ab} ... abgegebene Leistung

 P_{zu} ... zugeführte Leistung

p ... Pegel der Leistung in dB...

 p_{S} , p_{ERP} , p_{EIRP} ... Pegel der Sender-/ Strahlungsleistungen in dBm

Q ... Güte

R ... Widerstand

 R_G ... Gesamtwiderstand

 R_i ... Innenwiderstand

 R_1 , R_2 , R_3 , R_n ... Teilwiderstände

 R_p ... paralleler Verlustwiderstand R_s ... serieller Verlustwiderstand

r ... Reflektionsfaktor

S... Stromdichte

S/N ... Signal-Rauschverhältnis in dB, auch als

SNR oder $\frac{S+N}{N}$ bezeichnet

s ... Stehwellenverhältnis oder Welligkeit

T... Periodendauer

 T_K ... Temperatur in Kelvin bezogen auf den absoluten Nullpunkt T_0 ($T_0 = 0$ K = -273,15°C; d.h. 20°C ≈ 293 K)

t ... Zeit

U... Spannung

U_{eff} ... *Effektivspannung*

 U_G ... Gesamtspannung

 U_P ... Primärspannung

 U_R ... effektive Rauschspannung an R

 U_s ... Sekundärspannung

 U_{SS} ... Spannung von Spitze zu Spitze

 U_1 , U_2 ... Teilspannungen

 \hat{U} ... Spitzenspannung

 \hat{U}_{mod} ... Amplitude der Modulationsspannung

 $\hat{U}_{\scriptscriptstyle T}$... Amplitude der HF-Trägerspannung

u ... Pegel der Spannung in dB...

ü... Übersetzungsverhältnis

VSWR ... Stehwellenverhältnis oder Welligkeit

v₁ ... Wechselstromverstärkung

v_U... Wechselspannungsverstärkung

v_P ... Leistungsverstärkung für Wechselstrom

W ... Arbeit

 X_{C} kapazitiver Blindwiderstand

 X_L ... induktiver Blindwiderstand

Z... Wellenwiderstand

 Z_A ... Ausgangsscheinwiderstand

Z_E ... Eingangsscheinwiderstand

 Z_{F0} ... Feldwellenwiderstand des freien Raumes,

$$Z_{F0} = \sqrt{\frac{\mu_0}{\varepsilon_0}} = 120 \cdot \pi \cdot \Omega$$

Z_P ... Primärer Scheinwiderstand

Z_S... Sekundärer Scheinwiderstand

ΔI ... Stromänderung

ΔI_B ... Basisstromänderung

 ΔI_C ... Kollektorstromänderung

ΔU ... Spannungsänderung

 ΔU_{CE} ... Kollektor-Emitter-Spannungsänderung

 $\Delta U_{\scriptscriptstyle BE}$... Basis-Emitter-Spannungsänderung

α ... Abstrahlwinkel der Antenne

 β ... Wechselstromverstärkung

 ε_0 ... elektrische Feldkonstante,

$$\varepsilon_0 = \frac{1}{\mu_0 \cdot c_0^2} = 0.885 \cdot 10^{-11} \frac{As}{Vm}$$

 ε_r ... relative Dielektrizitätszahl (siehe Tabelle 2)

η ... Wirkungsgrad

 $\eta_{\%}$... Wirkungsgrad in Prozent

λ ... Wellenlänge

 μ_0 ... magnetische Feldkonstante,

$$\mu_0 = \frac{4\pi}{10^7} \frac{V_S}{Am} = 1,2566 \cdot 10^{-6} \frac{H}{m}$$

 μ_r ... relative Permeabilität

 $\rho\dots$ spezifischer elektrischer Widerstand

(siehe Tabelle 1)

ω... Kreisfrequenz

Tabelle 1: Spezifischer elektrischer Widerstand ρ

Material	Kupfer	Aluminium	Eisen
ρ in $\frac{\Omega \cdot mm^2}{m}$ bei 20°C	0,0178	0,030	0,17

Tabelle 2: Relative Dielektrizitätszahl ε_r

Dielektrikum /	Luft	Voll-PE	Schaum-PE	PTFE
Isolierstoff	(trocken)	(Polyäthylen)		(Teflon)
\mathcal{E}_r	1,00059	2,29	1,5	2,0